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Context

Podcasts
▶ “Spoken” version of the blog posts (audio content)
▶ Massively popularised in the recent years

Topics very useful for
▶ Categorization
▶ Retrieval
▶ Recommendation
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Challenges

Topic annotation still quite problematic
Manual annotation (curators, creators ...)

▶ Broad, noisy, or unreliable topics as podcast genres
Automatic annotation (data limitations):

▶ Speech transcription is expensive and with high WER for NEs
▶ Textual metadata (titles and descriptions) is a short text
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Objective

Revisit the feasibility of discovering relevant topics from podcast
metadata, titles and descriptions.

▶ Economic alternative
▶ Categories at different granularity levels
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Topic modeling on short text

Data sparsity challenge
▶ Topic-related words rarely co-occur in the same context
▶ Ambiguity, noise, limited context
▶ Conventional topic modeling techniques such as LDA unsuitable

But there is recent advancement of topic modeling techniques on
short text with good results
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Contributions

1 The most extensive benchmark of short-text topic modeling
techniques on podcast metadata

2 NEiCE
▶ NE-informed Corpus Embedding for NMF-based topic modeling
▶ Injecting NEs cues largely improves SOTA topic coherence results

3 A new podcast metadata corpus, the largest in terms of shows

Deezer’s podcast example
Title: Shields Up! Podcast
Description: Join Chris & Nev as they talk about their favourite Star
Trek episodes covering everything from TOS to Lower Decks.
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Related work
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Topic modeling on short text

Pseudo-documents-based
▶ Aggregate connected short texts in longer documents
▶ Apply conventional topic modeling

Probabilistic

Neural

NMF-based

F. B. Valero TM on Podcast Short-Text Metadata April 12, 2022 10 / 32



Models overview

GPU-DMM (Li et al., 2016)

Sampling process to promote topic-related words
Word association estimated by exploiting pre-trained word embeddings

NQTM (Wu et al., 2020)

Encoder generates peakier distributions (quantification)
Decoder uses negative sampling for discovering non-repetitive topics

SeaNMF (Shi et al., 2018)

Adjust NMF to integrate word-context semantic correlations
CluWords (Viegas et al., 2019)

Enhance corpus representation before applying NMF
Custom TF-IDF strategy exploiting pre-trained word embeddings
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Methods
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Intuition

Leverage NEs in a NMF framework (CluWords)
▶ High frequency of NEs in podcast metadata
▶ NEs convey topic information

Example
“That Peter Crouch Podcast” is related to football or sport

Why NMF-based topic modeling?
▶ Better results on short text
▶ NEs’ integration more straightforward than in deep neural networks
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Preliminaries: CluWords (Viegas et al., 2019)

NMF-based topic modeling
Novel document representation for term-document matrix (A)

▶ Leverages pre-trained embeddings to overcome data sparsity
▶ Inspired by TF-IDF (discriminant words » popular words)

tf_idf(t, d) = tf(t, d) · log
(
|D|
nt

)
(1)

▶ where tf(t, d) is the number of times t appears in document d and nt
is the number of documents in corpus D where t appears
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Preliminaries: CluWords (Viegas et al., 2019)

1 Compute matrix C where Ct,t′ is the cosine similarity (cos) of the
embeddings corresponding to the pair of terms t, t ′ ∈ V.

▶ αword used to select the most similar term pairs

Ct,t′ =

{
cos(vt , v

′
t) if cos(vt , v

′
t) > αword

0 otherwise
(2)

2 Compute TF-IDF over vector-based term representations instead of
individual frequencies.

▶ t replaced by Ct,: in order to expand the term’s context
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Preliminaries: CluWords (Viegas et al., 2019)

CluWords term-document matrix:

A∗
d ,t = tf∗(d , t) · idf∗(t) = (AC )d ,t · log

(
|D|∑

d∈D µ(t, d)

)
(3)

µ(t, d) is the mean cosine similarity between the term t and its
semantically related terms t ′ in document d denoted
Vd ,t = {t ′ ∈ d |Ct,t′ ̸= 0}

µ(t, d) =

{
1

|Vd,t | ·
∑

t′∈Vd,t Ct,t′ if |Vd ,t | > 0
0 otherwise

(4)
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NE-informed Corpus Embedding (NEiCE)

A new corpus representation matrix ANE leveraging NEs
Based on a preprocessing step and a computation step
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Preprocessing step

NE linking using REL (van Hulst et al., 2020)
▶ Identify NE mentions in podcast textual metadata
▶ Link NE mentions to Wikipedia entities

Consider as single words NE mentions whose confidence is low
▶ Exclude from these common names (e.g. Steve, Anna, France ...)

(NameDataset1)

Leverage Wikipedia2Vec (Yamada et al., 2018) word and entities
embeddings (for C )

1https://github.com/philipperemy/name-dataset
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Computation step

Consider NEs without including them in the vocabulary
Boost NEs importance by re-weighting their semantically-related words

tfNEd,t =
{

(AC )d,t +maxt′∈Vd,t (AC )d,t′ , if t ∈ Ee , e in d and |Vd,t | > 0
(AC )d,t otherwise

(5)
Ee = {t|cos(ve , vt) ≥ αent , ∀t ∈ V − E} is the set of non-NE words
from V most similar to a NE e.
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Datasets
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Statistics

Deezer is the largest podcast dataset in terms of number of shows
Large number of podcasts with NE mentions in all datasets

Dataset |D| |V| #NE mentions #podc. with NE #w/title #w/descr.
Spotify 17 456 7 336 20 885 9 198 3.5 38.2
iTunes 9 859 7 331 24 973 6 994 4.9 56.4
Deezer 29 539 14 322 67 083 19 969 4.0 62.6

Table: Summary of the podcast datasets: the number of podcasts, the vocabulary
size, the total number of NE mentions, the total number of podcasts with NEs in
metadata, the mean number of words per title, and the mean number of words
per description.

F. B. Valero TM on Podcast Short-Text Metadata April 12, 2022 21 / 32



Experiments
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Experimental setup and environment

Evaluation metric: topic coherence (CV ) Röder et al. (2015)
▶ Correlates best with human judgement of topic ranking

Number of top words T : 10
Number of topics K : 20, 50, 100 and 200
αword and αent in NEiCE: 0.2, 0.3, 0.4, 0.5
Default hyper-parameters for the baselines
Environment

▶ Intel Xeon Gold 6134 CPU @ 3.20GHz with 32 cores and 128GB RAM
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Results and Discussion
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Topic coherence scores obtained by baselines
NMF-based methods obtain the best scores
CluWords ranking first in most cases (7/12)
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Topic coherence scores obtained by NEiCE
NEiCE obtains larger coherence scores than the baselines in most cases
The introduction of NE cues has a positive impact, no matter the
choice of αword and αent
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Examples

k NEiCE NQTM
1 mindfulness, yoga, meditation, psychotherapist, beirut, displays,

psychotherapy, psychotherapist, remixes, weddings, adversity, namaste,
hypnotherapy, psychoanalysis, hypnosis, kimberly, agenda, introducing

therapist, psychology
2 fiction, nonfiction, novel, author, avenues, werewolf, criminal, pure,

book, novelist, horror, cyberpunk, imaginative, strategies, demand,
anthology, fantasy agree, oldies, hang

3 republican, senator, senate, libertarian, hour, sudden, key, genres, keeps,
election, candidate, nonpartisan, round, neighbor, conservatives,

conservative, caucus, liberal realize, fulfillment

Table: Topics obtained with NEiCE or NQTM on Deezer and K = 50.
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Conclusions
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Conclusions

Detailed study of topic modeling on podcast metadata
Release the largest podcast metadata dataset2

Propose NEiCE, a new NE-informed document representation
exploited in a NMF framework
Take into account NEs helps to be more effective in terms of topic
coherence than the baselines in various evaluation scenarios
Future work: conduct expert studies with editors to further validate
mined topics in order to find best NEiCE configuration

2https://zenodo.org/record/5834061.YkBGuC8lO_z
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